
Abstract Events and situations are represented by strings of temporally
ordered observations, on the basis of which the events and situations are
recognized. Allen’s basic interval relations are derived from superposing strings
that mark interval boundaries, and Kamp’s event structures are constructed as
projective limits of strings. Observations are generalized to temporal proposi-
tions, leading to event-types that classify event-instances. Working with sets of
strings built from temporal propositions, we obtain natural notions of bounded
entailment from set inclusions. These inclusions are decidable if the sets are
accepted by finite automata.

Keywords Event structure � Time

1 Introduction

Consider the phrase ‘‘rain from dawn to dusk.’’ Suppose we were to analyze its
meaning in terms of primitives rain, dawn and dusk that are true (or not) at
particular times. In other words, each p 2 frain; dawn; duskg is a temporal
proposition interpreted relative to a set T of times and a function ½½��� that maps p
to a set ½½p�� � T of times such that

t 2 ½½p�� is read ‘‘p is true at t ’’

for all t 2 T . An obvious candidate for T is the set < of real numbers. But is the
notion of ‘‘dawn’’ defined so precisely that we can pin down when dawn ends
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(or begins) with the infinite precision of <? That is, can we choose a real number
x such that dawn is true (or false) at x but not at any nearby point xþ d, no
matter how small d > 0 is? Were we to model time by intervals over < instead of
elements of <, the problem becomes how to choose an interval I over < such
that dawn is true at I but not at any extension of I , however minute. For
instance, if I were the unit interval

½0; 1� ¼ fx 2 < j 0 � x � 1g

consisting of real numbers between 0 and 1 (inclusive), can we distinguish I
from intervals

½0; 1þ d� ¼ ½0; 1� [ fx 2 < j 1 < x � 1þ dg

or

½�d; 1� ¼ ½0; 1� [ fx 2 < j � d � x\0g

for all d > 0? Is there not a sufficiently tiny d > 0 such that dawn can only be
deemed true at ½0; 1� if it is also at ½0; 1þ d� and at ½�d; 1�? Insisting that dawn
began (or ended) at 6:03 and not a picosecond earlier (or later) has the smell of
false precision.

A common approach to vague predicates is to live with many admittedly
overdetermined interpretations ½½���, calling them supervaluations (e.g. Fine
1975). An alternative pursued in this paper is to work with representations
faithful to the bounded precision of observations. An example of such a rep-
resentation is the string dawn rain dusk , representing three ‘‘successive’’ times
t1; t2; t3 2 T such that dawn is observed at t1, rain at t2, and dusk at t3. The notion
of ‘‘successive’’ times can be made explicit through a binary relation su on T ,
relative to which we define an su-chain to be a finite sequence t1t2 � � � tn of times
such that ti su tiþ1 for 1 � i < n. In general, a string a1a2 � � � an of sets ai of
temporal propositions su-represents an su-chain t1t2 � � � tn (of the same length n)
if for every integer i from 1 to n (inclusive), ai consists of observations at ti. See
Table 1.1 We are assuming here a notion of an observation at time t that we can
treat as primitive or define in some way. Alternatively, resorting to the func-
tions ½½��� mentioned above, we might say that a1a2 � � � an ðsu; ½½���Þ-describes an
su-chain t1t2 � � � tn if for every i from 1 to n,

ti 2 ½½u�� for every temporal proposition u 2 ai:

1 As will become clear below, it will be useful to take ai to be a set of temporal propositions (rather
than a single temporal proposition). We enclose that set by a box (rather than by the usual curly
braces f�g) to reinforce the intuition that a1a2 � � � an is a film-strip made of snapshots ai. Since a box
designates a set whose elements are written inside it, we have

u;w ¼ w;u ¼ u;w;u

and the empty box � is the empty set ; (conceived as a snapshot).
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Note that ai is not required to include every temporal proposition that is ½½���-true
at ti. Observations at t are understood to be true at t; however, an arbitrary
temporal proposition true at t need not be observed at t.

We can evaluate the string dawn rain dusk relative to various choices of
T ; su and ½½���. For example, we might let T consist of half-closed real intervals

½x; yÞ ¼def fz 2 < j x � z\yg

for x; y 2 < such that x < y, and stipulate that su holds between members of T
that border (or ‘‘meet’’) each other in that

½x; yÞ su ½x0; y0Þ ,
def

y ¼ x0

for all ½x; yÞ and ½x0; y0Þ 2 T . Under these definitions, successive intervals have no
gaps between them:

whenever ½x; yÞ su ½x0; y0Þ; ½x; yÞ [ ½x0; y0Þ ¼ ½x; y0Þ:

Thus, if the interpretation ½½rain�� of rain has the property that for all ½x; yÞ 2 T ,

½x; yÞ 2 ½½rain�� () whenever x < x0 < y;

½x; x0Þ 2 ½½rain�� and ½x0; yÞ 2 ½½rain��

then

rain ðsu; ½½���Þ-describes½x; yÞ () whenever x < x0 < y;

rain rain ðsu; ½½���Þ-describes
½x; x0Þ½x0; yÞ

so that the difference between

dawn rain dusk and dawn rain
n
dusk for n > 1

(where s0 is the null/empty string � and snþ1 ¼ sns) comes down to how many
times we chop an interval ½x; yÞ. A reason to chop ½x; yÞ up is to accommodate
additional observations such as noon, 2pm and warm at sub-intervals of ½x; yÞ,
leading to strings such as

dawn rain rain; noon rain rain; 2pm;warm rain;warm rain dusk :

Table 1 Strings from
temporal propositions Temporal proposition u

Symbol (snapshot) a ¼ u . . .
String (film strip) a1a2 � � � an
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Having linked strings to interpretations ½½���, we might ask if these strings
really do constitute an alternative to supervaluations. Does the no-gap con-
strual above not re-introduce overdetermination? Not necessarily. The claim
that dawn rain dusk ðsu; ½½���)-describes ½0; 1Þ½1; 2Þ½2; 3Þ does not entail that dawn
is not ½½���-true at ½0; 1þ dÞ for d > 0, or that the real numbers 0, 1, 2 or 3 are the
exact points at which the truth values of certain temporal propositions change.
Observations are not exhaustive with respect to truth, so there need not be a
hidden assumption here of infinite precision. Furthermore, strings need not be
evaluated relative to a set T of times based on the real numbers or a relation su
that fills in all gaps. Indeed, we might minimize our metaphysical commitments
by working not with ‘‘real’’ times but with observation times, any two of which
are discernibly different (Fernando 2006b). What matters (arguably) is not so
much what times or events ‘‘really’’ are, but how the events are temporally
related and how we recognize events. The strings dawn rain

n
dusk (for n � 1)

record observations on the basis of which an event of ‘‘rain from dawn to dusk’’
is recognized.2 Reasons for forming strings of different lengths (nþ 2) have
already been hinted above, but will be developed at greater length below, as we
relate these strings to event structures in the sense of Kamp and Reyle (1993) as
well as temporal logics.

1.1 Temporal relations

Event structures in Kamp and Reyle (1993) highlight two binary relations on
events, strict temporal precedence � and temporal overlap�. Kamp has shown
how to flesh out the notion of time implicit in an event structure through
moments, relative to which events stretch over intervals. The relations � and�
can be expressed as disjunctions of Allen’s interval relations (e.g. Allen and
Ferguson 1994). In Sect. 2, we provide a string-theoretic account of Allen’s
relations and event structures through suitable constructions on strings (involv-
ing superposition, padding, block reduction, inverses and projective limits).

1.2 Types versus instances

Particular events can be related according not only to when they happen but
also to what states of affairs they describe. Putting the times at which they
happen aside, we might ask when two events are instances of the same type.
When does one event contain another? What entailments can we associate with
events? We take up these questions in Sect. 3, where we exploit more fully the
possibilities afforded by formulating observations as temporal propositions.
Rather than appeal to worlds in a Kripke semantics for these propositions, we
build strings representing situations that relate different events. Entailments can

2 We can record rain during parts of dawn and dusk in strings dawn; rain rain
n
dusk; rain without

requiring rain throughout dawn or dusk. As observations are non-exhaustive, the strings
dawn rain

n
dusk are not incompatible with these, so I have used them above for simplicity. In any

case, I believe what I have to say below applies equally to the more specified choices
dawn; rain rain

n
dusk or dawn rain

n
dusk; rain or dawn; rain rain

n
dusk; rain .
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be read directly off these strings, and can be extended by either increasing string
length (described in Table 5 below as ‘‘temporal stretch’’) or adding temporal
propositions to the constituent symbols (‘‘descriptive detail’’ in Table 5). In
the concluding section, we discuss some of the wider implications for natural
language temporality.

2 Event times related in strings

As concrete particulars, events have temporal projections, the topic of this
section. These projections are commonly described as intervals, basic relations
between which have been catalogued by James Allen. We reproduce these
relations in terms of strings representing event occurrences (Sect. 2.1), and then
explain how to extract intervals from these strings by showing that the strings
constitute instances of Hans Kamp’s event structures (Sect. 2.3).

To isolate the structure relevant to intervals, we shall reduce a string in two
ways. These reductions are perhaps most easily motivated by the no-gap con-
strual above of dawn rain dusk , but are suited also to the examples of interest in
this section. Reducing dawn rain

n
dusk for n � 1 to dawn rain dusk , we define

the block compression bcðsÞ of an arbitrary string s inductively by

bcðsÞ ¼def
s if lengthðsÞ � 1
bcðas0Þ if s ¼ aas0

a bcða0s0Þ if s ¼ aa0s0 where a 6¼ a0

8
<

:
:

for all symbols a and a0. Compressing a block aa of two a’s to one implements
the dictum ‘‘no time without change’’ (Kamp and Reyle 1993, p. 674). A second
reduction is based on the idea that an empty box � appearing at the head or tail
of a string is uninformative padding. Given a string s, we strip off initial and
final �’s as often as they appear, defining

unpadðsÞ ¼def s if s neither begins nor ends with �
unpadðs0Þ if s ¼ �s0 or else if s ¼ s0�

�

for any string s. For example,

unpadð�ns�mÞ ¼ unpadðsÞ

for all integers n;m � 0. Now, we apply the functions bc and unpad in sequence
to form the projection pðsÞ of a string s

pðsÞ ¼def unpadðbcðsÞÞ ¼ bcðunpadðsÞÞ

with initial and final �’s deleted, and blocks aan compressed to a. For example,

pð�n dawn
i
rain

j
dusk

k
�

mÞ ¼ dawn rain dusk ð1Þ
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for all non-negative integers n;m � 0 and all positive integers i; j; k > 0. A bit
more notation will be handy. We write f�1s for the inverse image of a string s
under a function f

f�1s ¼def fs0 j f ðs0Þ ¼ sg

and we refer to a set of strings as a language. The Kleene star L	 of a language L
is the smallest set L0 containing � such that for all s 2 L and s0 2 L0, ss0 2 L0.
Hence, �	 is the set

�
	 ¼ f�n j n � 0g

of finite strings of �, and we can describe example (1) above as

p�1 dawn rain dusk ¼ �	 dawn
þ

rain
þ

dusk
þ
�
	

where Lþ ¼def L	L. Throughout this paper, we follow the custom in formal
language theory of conflating a string s with the singleton language fsg when
convenient.

2.1 Allen’s interval relations via superposition

Fix two events e and e0, and let oðeÞ and oðe0Þ be temporal propositions that
assert observations of e and e0, respectively. Let us consider strings over the
alphabet PowðfoðeÞ; oðe0ÞgÞ consisting of the four symbols �, oðe0Þ , oðe0Þ and
oðeÞ; oðe0Þ . To save on space, let us shorten the last three symbols to ½e�; ½e0� and
½e; e0�, respectively. The string

oðeÞ; oðe0Þ ¼ ½e; e0�

of length 1 describes temporal overlap e� e0 between e and e0 insofar as both e
and e0 are observed at the same box. The string

oðeÞ oðe0Þ ¼ ½e�½e0�

‘‘suggests’’ that e temporally precedes e0, e � e0, insofar as e occurs before e0 in
it. The reason we say ‘‘suggests’’ (rather than ‘‘describes,’’ as in the case of
½e; e0�) is that the string ½e�½e0� might be ‘‘part of’’ the string ½e; e0�½e0� with
‘‘subpart’’ ½e; e0� describing overlap between e and e0. We will make the notions
of ‘‘part’’ and ‘‘subpart’’ precise in Sect. 3.2 below, but for now, let us simplify
matters by construing strings exhaustively. That is, let us agree that a string
a1a2 � � � an over the alphabet PowðfoðeÞ; oðe0ÞgÞ holds of n successive times
t1; t2; . . . ; tn if for 1 � i � n,

e occurs at ti () oðeÞ 2 ai
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and

e0 occurs at ti () oðe0Þ 2 ai:

Thus, the occurrences of e form an interval in a1a2 � � � an precisely if

whenever 1 � i < j < k � n; if oðeÞ 2 ai and oðeÞ 2 k then oðeÞ 2 aj

(and similarly for e0 in place of e). Now, let us consider how e and e0 might be
temporally related in a string a1a2 � � � an over PowðfoðeÞ; oðe0ÞgÞ assuming e and
e0 occur as intervals in a1a2 � � � an. If we apply the function p defined above to
strings a1a2 � � � an where both e and e0 occur as intervals, it turns out there are
13 different strings we can get, one for each of the 13 Allen interval relations
(Allen and Ferguson 1994) (See Table 2).

We can generate the strings in Table 2 naturally through a binary operation
on languages, the symbols in which are sets. The operation is called superpo-
sition, written &, and the alphabet PowðWÞ consists of subsets of some fixed set
W such as foðeÞ; oðe0Þg. Before we define it in general, let us give some examples,
recalling that we confuse a string s with the language fsg when convenient. On
strings a1a2 � � � an and b1b2 � � � bn of the same length n, & returns the compo-
nentwise union ai [ bi of the strings

a1a2 � � � an & b1b2 � � � bn ¼ ða1 [ b1Þða2 [ b2Þ � � � ðan [ bnÞ

so that, for example,

½e; e0� ¼ ½e� & ½e0�
½e�½e0� ¼ ½e�� & �½e0�

½e�½e; e0�½e� ¼ ½e�½e�½e� & �½e0��:

In general, given languages L and L0 over the alphabet PowðWÞ, the superpo-
sition L&L0 consists of the componentwise union of strings in L and L0 of the
same length

L&L0 ¼def
[

n�0
fða1 [ b1Þ � � � ðan [ bnÞja1 � � � an 2 L and b1 � � � bn 2 L0g

Table 2 Allen relations between e and e0 in s 2 Lðe; e0Þ

Allen relation pðsÞ Allen relation pðsÞ

e before e0 [e��[e0] e after e0 [e0]�[e]
e meets e0 [e][e0] e met-by e0 [e0][e]
e overlaps e0 [e][e; e0][e0] e overlapped-by e0 [e0][e; e0][e]
e starts e0 [e; e0][e0] e started-by e0 [e; e0][e]
e during e0 [e0][e; e0][e0] e contains e0 [e][e; e0][e]
e finishes e0 [e0][e; e0] e finished-by e0 [e][e; e0]
e equals e0 [e; e0]
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(Fernando 2004). Now, to capture the strings listed in Table 2, let us form the
inverse images of ½e� and of ½e0� under p before superposing. That is, we define
the language

Lðe; e0Þ ¼def p�1½e� & p�1½e0�
¼ �	½e�þ�	 & �	½e0�þ�	

superposing any positive number of consecutive observations of e with any
positive number of consecutive observations of e0, padded to the left and right
by �’s. We can partition the language Lðe; e0Þ into three disjoint sublanguages
(where we write þ for non-deterministic choice):

(i) �	½e�þ�	½e0�þ�	 in which e � e0

(ii) �	ð½e�	 þ ½e0�	Þ½e; e0�þð½e�	 þ ½e0�	Þ�	 in which e� e0, and
(iii) �	½e0�þ�	½e�þ�	 in which e0 � e.

Next, if for any function f on strings and any language L, we write f hLi for the
image ff ðsÞ j s 2 Lg of L under f , then it follows that

(i) ph�	½e�þ�	½e0�þ�	i ¼ ½e�ð�þ �Þ½e0�
(ii) ph�	ð½e�	 þ ½e0�	Þ½e; e0�þð½e�	 þ ½e0�	Þ�	i ¼ ð½e� þ ½e0� þ �Þ½e; e0�ð½e� þ ½e0� þ �Þ
(iii) ph�	½e0�þ�	½e�þ�	i ¼ ½e0�ð�þ �Þ½e�.
For the record,

Theorem 1 php�1½e� & p�1½e0�i consists of the thirteen strings

½e�ð�þ �Þ½e0� þ ð½e� þ ½e0� þ �Þ½e; e0�ð½e� þ ½e0� þ �Þ
þ ½e0�ð�þ �Þ½e�

listed in Table 2.

Remark As

php�1½e� & p�1½e0�i 6¼ php�1½e�i & php�1½e0�i ¼ ½e; e0�;

one should be careful to say that the reductions bc and unpad built into p
abstract away structure irrelevant to intervals. Some of that structure is
essential if we are to capture the Allen relations through superposition. Some of
that structure, not all. We can form phLðe; e0Þi by applying p to

fs 2 p�1½e� j lengthðsÞ � 3g & fs 2 p�1½e0� j lengthðsÞ � 3g:

Can we make do then with strings of length �3? Not if we wish to consider
more than two events side by side. For n events e1; . . . ; en, a string in

php�1½e1� & � � � & p�1½en�i

534 T. Fernando

123



can have up to length 2n� 1. It is tempting to reduce a block ak for k > 1 to a, if
what is important is what is observed (namely a), and not the number (beyond 1)
of acts of observation. But the number of acts of observation becomes crucial
when ak is refined differentially by superposition with a string a1 � � � ak of k
snapshots, where a1 or ak might be �. Our association of Allen relations with
phLðe; e0Þi in Table 2 depends on the understanding that no further observations
are to be made that bear on e or e0. The structure that p projects away and the
complications arising from the partiality of observations are among the main
concerns of Sect. 3 below. In the meantime, we will presently embellish the
superposition p�1½e� & p�1½e0� so as to relate the strings to event structures.

2.2 Moments for Kamp’s event structures

An event structure hE;�;�i in Kamp and Reyle (1993) consists of a set E of
events and binary relations on E of temporal precedence � and temporal
overlap� satisfying the axioms listed in Table 3.3 If� were equality on E, then
(P1)–(P7) would say simply that � linearly orders E. But as� can hold between
non-equal events, it will prove useful to collect pairwise overlapping subsets of
E in the set

Oð�Þ ¼def fa � E j ð8e; e0 2 aÞ e� e0g

and lift � to Oð�Þ by existential quantification, defining

a �� a0 ,
def
ð9e 2 aÞð9e0 2 a0Þ e � e0

for all a; a0 2 Oð�Þ. The crucial next step is to pick out the �-maximal elements
of Oð�Þ in

Mð�Þ ¼def ft 2 Oð�Þ j ð8a 2 Oð�ÞÞt � a implies a ¼ tg

and set

sðeÞ ¼def ft 2 Mð�Þ j e 2 tg

for all e 2 E. It is natural to call the elements of Mð�Þ moments in view of

Table 3 Axioms for event
structures (Kamp and Reyle
1993, p. 667)

(P1) e < e0 implies not e0 < e
(P2) e < e0 < e00 implies e < e00

(P3) e� e
(P4) e� e0 implies e0 � e
(P5) e < e0 implies not e� e0

(P6) e1 < e2� e3 < e4 implies e1 < e4

(P7) e < e0 or e� e0 or e0 < e

3 The first two postulates are superfluous. (P1) is derivable from (P2), (P3) and (P5); and (P2) from
(P3) and (P6).

Observing events and situations in time 535

123



Theorem 2 (Kamp) Given an event structure hE;�;�i, �� linearly orders
Mð�Þ and for every e 2 E, sðeÞ is a ��-interval of Mð�Þ—i.e.,

ð8t; t0 2 sðeÞÞð8t00 2Mð�ÞÞ t �� t00 �� t0 implies t00 2 sðeÞ:

Moreover,
e � e0 () ð8t 2 sðeÞÞð8t0 2 sðe0ÞÞ t �� t0

e� e0 () ð9t 2 sðeÞÞ t 2 sðe0Þ

for all e; e0 2 E.

Examples
For E ¼ fe; e0g, there are three event structures

(i) �1 ¼ fðe; e0Þg and �1 ¼ ;
(ii) �2 ¼ ; and �2 ¼ E
 E
(iii) �3 ¼ fðe0; eÞg and �3 ¼ ;

with

(i) Mð�1Þ ¼ ffeg; fe0gg and ��1

1 ¼ fðfeg; fe0gÞg
(ii) Mð�2Þ ¼ fEg and ��2

2 ¼ ;
(iii) Mð�3Þ ¼ ffeg; fe0gg and ��3

3 ¼ fðfe0g; fegÞg

corresponding to the strings (i) ½e�½e0�, (ii) ½e; e0� and (iii) ½e0�½e�. The obvious
question is what about the 10 other strings in Table 2? These ten strings collapse
into one of the three once we delete boxes not in Mð�Þ, namely, � and in case
½e; e0� 2 Mð�Þ, ½e� and ½e0�.

More concretely, take the following instance of (ii). Suppose e and e0 were the
half-open real intervals ½0; 2Þ and ½1; 3Þ respectively so that

ðyÞ e but not e0 occurs at ½0; 1Þ, both e and e0 occur at ½1; 2Þ, and e0 but not e
occurs at ½2; 3Þ.

To capture the real numbers and intervals in ðyÞ through Mð�Þ and ��, we
must enrich the event structure hfe; e0g; ;; fe; e0g 
 fe; e0gi considerably. We will
see how in Sect. 2.3. For now, let us focus on the string representation

½e�½e; e0�½e0� ¼ oðeÞ oðeÞ; oðe0Þ oðe0Þ

of ðyÞ. To get around the requirement of maximality in Mð�Þ, it suffices to add
events e0l (for the left of e0) and er (for the right of e) to fe; e0g for an event
structure hfe; e0; er; e

0
lg;�þ;�þi where �þ and�þ extend � and� so that we

can picture �þ�þ on Mð�þÞ as

½e; e0l�½e; e0�½er; e
0� ¼ oðeÞ; oðe0lÞ oðeÞ; oðe0Þ oðerÞ; oðe0Þ :
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In particular, e�þ e0l �þ e0 and e �þ er�þ e0. We can extract ½e�½e; e0�½e0� from
½e; e0l�½e; e0�½er; e

0� by applying the function r that maps a string a1a2 � � � an to its
restriction

rða1a2 � � � anÞ ¼def ða1 \ ½e; e0�Þða2 \ ½e; e0�Þ � � � ðan \ ½e; e0�Þ

to ½e; e0� ¼ foðeÞ; oðe0Þg.
The general idea is that an event e marks not only the time at which it occurs

but in case it is bounded to the left, its past el, and in case it is bounded to the
right, its future er.

4 This suggests refining the superposition

p�1½e� & p�1½e0� ¼ �	½e�þ�	 & �	½e0�þ�	

to

Ll
rðe; e0Þ ¼

def ½el�	½e�þ½er�	 & ½e0l�
	½e0�þ½e0r�

	

(with the offending non-maximal set � filled in), from which we can derive all
thirteen strings in Table 2

php�1½e� & p�1½e0�i ¼ phrhLl
rðe; e0Þii:

The composition p � r of functions p and r will be crucial to our construction of
event structures as projective limits of strings.

2.3 Event structures as projective limits

For the remainder of this section, we fix a set E of events, and drop the dis-
tinction between an event e 2 E and a temporal proposition oðeÞ asserting an
observation of e. This simplifies the notation, reducing the symbols from which
we form strings to subsets of E. Given a set X � E of events and a string
s ¼ a1a2 � � � an 2 PowðEÞ	, we write rXðsÞ for the restriction

rXða1a2 � � � anÞ ¼def ða1 \XÞða2 \XÞ � � � ðan \XÞ

to X , and let pX ðsÞ be the result of applying p to rXðsÞ

pX ðsÞ ¼def pðrXðsÞÞ:

Notice that

whenever Y � X ; pY ðsÞ ¼ pY ðpX ðsÞÞ

4 For an event e bounded to the left and right, the triple hel; e; eri is essentially what chapter 2 of
van Lambalgen and Hamm (2005) calls a Walker instant (with e understood to have non-empty
temporal extent).

Observing events and situations in time 537

123



which is to say that the maps pX :: PowðEÞ	 ! PowðXÞ	 induce a projective/
inverse limit over the set FinðEÞ of finite subsets X of E. More specifically, we
define an E-point to be a function p : FinðEÞ !

S
X2FinðEÞ PowðXÞ	 such that

ð8X 2 FinðEÞÞ ð8Y � XÞ pðYÞ ¼ pYðpðXÞÞ 2 PowðYÞ	:

For each s 2 PowðEÞ	, the map ps sending a finite subset X of E to pX ðsÞ is an
E-point. Going beyond these points, we can represent the real line h<; <i by an
E-point p< if E � < contains the real numbers and

p<ðfr1; r2; . . . ; rngÞ ¼def r1� r2� � � �� rn

for any finite sequence r1 < r2 < � � � < rn of real numbers.5 Returning to the
example in the previous subsection of e ¼ ½0; 2Þ and e0 ¼ ½1; 3Þ, we can express

ðyÞ e but not e0 occurs at ½0; 1Þ, both e and e0 occur at ½1; 2Þ, and e0 but not e
occurs at ½2; 3Þ.

through the string

0; e e 1; e; e0 e; e0 2; e0 3

of length 6 over the finite set f0; 1; 2; 3; e; e0g of events.
In general, given an E-point p, let hEp; <p;�pi be the triple consisting of

the set

Ep ¼def fe 2 E j pðfegÞ ¼ eg

of events e that p treats as an interval, and binary relations <p and �p on Ep

such that (in accordance with Table 2)

e <p e0 ()
def

pðfe; e0gÞ 2 e e0 þ e� e0

e�p e0 ()
def

pðfe; e0gÞ 2 ð e þ e0 þ �Þ e; e0 ð e þ e0 þ �Þ

for all e; e0 2 E.

Proposition 3 For every E-point p, hEp; <p;�pi is an event structure. Further-
more, for all e; e0 2 E,

ð9e1 <p e0Þð9e2�p e1Þ e <p e2 implies pðfe; e0gÞ ¼ e� e0

5 Whether a full system of observations can be devised for arbitrarily close real numbers r < r0 is
(as noted in the introduction) questionable in practice, if not in principle. It is not clear to me, in any
case, that natural language semantics depends on such a system (pace van Lambalgen and Hamm
2005).
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and whenever e�p e0,

ð9e1 <
p e0Þ e�p e1 implies pðfe; e0gÞ 2 e e; e0 ð e þ e0 þ �Þ

ð9e1�p eÞ e0 <p e1 implies pðfe; e0gÞ 2 ð e þ e0 þ �Þ e; e0 e :

What about the converses of the implications in Proposition 3? Let us build
these conditions into the following definition. An E-point p represents an event
structure hE;�;�i if hEp; <p;�pi ¼ hE;�;�i and

pðfe; e0gÞ ¼ e� e0 () ð9e00 � e0Þ
ð9e000 � e00Þ e � e000 ð2Þ

pðfe; e0gÞ 2 e e; e0 ð e þ e0 þ �Þ () e� e0 and

ð9e00 � e0Þ e� e00 ð3Þ

pðfe; e0gÞ 2 ð e þ e0 þ �Þ e; e0 e () e� e0 and

ð9e00 � eÞ e0 � e00 ð4Þ

for all e; e0 2 E. The remainder of this section is devoted to establishing

Theorem 4 For every event structure hE;�;�i, there is a unique E-point p that
represents it.

To prove Theorem 4, let us fix an event structure hE;�;�i. We extend it to an
event structure hEþ;�þ;�þi with canonical witnesses to the existential quan-
tification in the equivalences (2)–(4) as follows. Let

Eþ ¼def E [ fel j e 2 E and ð9e0Þ e0 � eg [
fer j e 2 E and ð9e0Þ e � e0g

where e; e0l and e00r are distinct for all e; e0; e00 2 E. The plan is to extend� to�þ
so that the equivalences (2)–(4) are met by

pðfe; e0gÞ ¼ e� e0 () e0l�þ er ð5Þ

pðfe; e0gÞ 2 e e; e0 ð e þ e0 þ �Þ () e� e0 and e�þ e0l ð6Þ

pðfe; e0gÞ 2 ð e þ e0 þ �Þ e; e0 e () e� e0 and e0r�þ e ð7Þ

respectively. Accordingly, we set
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e0l�þ er ()
def
ð9e00 � e0Þð9e000 
 eÞ e00 � e000

e�þ e0l ()
def
ð9e00 � e0Þ e� e00

e0r�þ e ()
def
ð9e00 
 e0Þ e00 � e

and for symmetry,

er�þ e0l ()
def

e0l �þ er

e0l�þ e ()
def

e�þ e0l

e�þ e0r ()
def

e0r�þ e:

The remaining instances of �þ beyond � are given by

el�þ e0l ()
def
ð9e00 � eÞð9e000 � e0Þ e00 � e000

and

er�þ e0r ()
def
ð9e00 
 eÞð9e000 
 e0Þ e00 � e000:

To ensure hEþ;�þ;�þi is an event structure, we arrange

x�þ x0 () neither x �þ x0 nor x0 �þ x

or equivalently,

x �þ x0 () neither x�þ x0 nor x0 �þ x

(for all x; y 2 Eþ), setting �þ to

� [ fðel; e
0
rÞ j ð9e00 � eÞð9e000Þ e0 � e000 and not el�þ e0rg

[ fðe; e0rÞ j ð9e00Þ e0 � e00 and not e�þ e0rg
[ fðel; e

0Þ j ð9e00Þ e00 � e and not el�þ e0g:

For every non-empty subset X of E, let Xþ be the part of Eþ carved out by X

Xþ ¼def X [ fel j e 2 X and ð9e0Þ e0 � eg [ fer j e 2 X and ð9e0Þ e � e0g

and let �X
þ and �X

þ be the restrictions to Xþ of �þ and �þ

�X
þ ¼

def �þ \ðXþ 
 XþÞ

�X
þ ¼

def �þ \ðXþ 
 XþÞ:
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For example, �E
þ is �þ, and �E

þ is �þ. But it will be useful below also to
consider X 2 FinðEÞ, in view of

Lemma 5 If hE;�;�i is an event structure and X is a non-empty subset of E,
then hXþ;�X

þ;�X
þi is an event structure.

Next, we apply Kamp’s construction of time (described in Sect. 2.2) to the
event structure hXþ;�X

þ;�X
þi, picking out

(a) the �X
þ-overlapping sets

OX ¼def fa � Xþ j ð8e; e0 2 aÞ e�X
þ e0g

(written Oð�X
þÞ under the conventions of Sect. 2.2)

(b) the moments

MX ¼def fa 2 OX j ð8a0 2 OX Þ a � a0 implies a ¼ a0g

(in full, Mð�X
þÞ), and

(c) the relation �X with

a �X a0 ()
def
ð9x 2 aÞð9x0 2 a0Þ x �X

þ x0

for a; a0 2 OX .

For finite X , we can appeal to Lemma 5 and Theorem 2 for an enumeration

MX ¼ faX
1 ; a

X
2 ; . . . ; aX

n g

of MX that is �X -increasing

aX
1 �X aX

2 �X � � � �X aX
n

(dropping the subscript X on n for simplicity). Generalizing over X 2 FinðEÞ,
we form the map p̂ : FinðEÞ !

S
X2FinðEÞ PowðXÞ	 such that p̂ð;Þ ¼ � and for

non-empty X 2 FinðEÞ,

p̂ðX Þ ¼def pX ðaX
1 aX

2 � � � aX
n Þ:

An argument by induction on the cardinality of finite subsets of E shows that
the map p̂ is the unique E-point representing hE;�;�i. So much for Theorem 4.

3 From concrete particulars to types

Having dwelt in the previous section on temporal instantiations of events, we
now abstract away from concrete particulars to consider the types exemplified
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by these occurrences. The distinction here between particulars and types can be
explained by analogy with Kripke semantics for modal logic. Recall that a
Kripke model hN ;R; V i for a set P of atomic propositions consists of

(a) a frame hN ;Ri given by a set N of nodes and an accessibility relation
R � N 
 N on N , and

(b) a valuation V : P ! PowðNÞ from P to the family of subsets of N .

Given a valuation V , an atomic proposition p 2 P can be viewed as a type
V ðpÞ � N of nodes where p is interpreted to be true. Add a binary relation R on
N and we can classify further subsets of N through a set U � P of temporal
propositions u with ½½u�� � N (and ½½p�� ¼ V ðpÞ for p 2 P ). But what does this all
have to do with events?

The idea is summarized in Table 4, where Kripke frames and event structures
are viewed as concrete particulars, in contrast to types given by valuations and
languages over the alphabet PowðUÞ. More precisely, given an event structure
hE;�;�i, Theorem 2 says we can extract a linear order �� on a set Mð�Þ of
moments such that if we map an arbitrary event e 2 E to an atomic proposition
oðeÞ that we in turn interpret as the ��-interval

V̂ ðoðeÞÞ ¼def ft 2Mð�Þ j e 2 tg

then we obtain a Kripke model hMð�Þ;��; V̂ i for foðeÞ j e 2 Eg. In Sect. 2.3,
we suppressed the distinction between oðeÞ and e to lighten the notation. We now
restore that distinction, but mainly in order to shift the focus from the partic-
ulars e 2 E to the temporal propositions u 2 U. Henceforth, we adopt the term
fluent for temporal proposition, following the custom in AI since McCarthy and
hayes (1969) (as well as more recent work such as van Lambalgen and Hamm
2005). That is, we refer hereafter to the elements of U as fluents.

Deriving a fluent oðeÞ 2 U from an event e that stretches over an interval
raises the possibility of interpreting fluents over intervals. That is, instead of the
frame hMð�Þ;��i, why not build a Kripke model over hE;�;�i or perhaps
hOð�Þ � f;g;��; �̂i where

a �̂ a0 ()
def

a \ a0 6¼ ;

for all a; a0 2 Oð�Þ? In Venema (1990), for instance, fluents are interpreted over
closed intervals of a strict partial order. Here, we take a different approach.
Instead of interval-based fluents, we assemble finite strings a1a2 � � � an 2 FinðUÞ	

Table 4 Concrete particulars versus information units

Particulars Types (information units)

Kripke model Kripke frame hN;Ri Valuation V:P! PowðNÞ
Here Event structure hE;�;�i Languages over FinðUÞ
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of finite sets ai � U of fluents that are interpreted in the usual (point-based) way
over linear orders. To link up with interval-based event structures hE;�;�i, we
appeal to Kamp’s construction of moments (Sect. 2.2) and projective limits
(Sect. 2.3).

Implicit in the identification of e with oðeÞ in Sect. 2.3 is the assumption that
the fluent oðeÞ is used to describe only the event e. Generalizing from instances
to types, we work in this section also with fluents such as dawn that may occur
at scattered (not necessarily successive) positions in a string a1a2 � � � an 2
FinðUÞ	, forming part of a description of a variety of event types, anyone of
which may have several instances. (It may rain at dawn one day, be clear the
next, and then rain again the following dawn.) A string s 2 FinðUÞ	 represents
not so much an event instance as an event type (with any number of instances);
instances are represented by string occurrences. For example, the string sŝs
containing two occurrences of s represents an event type formed by two
instances of the type represented by s, separated by a string ŝ of observations.

In Sect. 3.1, we provide examples of fluents and event types they describe.
The event types can be refined incrementally; we show how in Sect. 3.2, building
up to situations.

3.1 Some fluents and event types

We start with the simple case of an interval described by oðeÞ. Over a finite
linear order < (such as the X -components of the projective limit in Sect. 2.3), a
non-empty interval I has <-least and <-greatest elements tI and t0I , which is to
say it is closed

I ¼ fx j tI � x � t0Ig

(where � is the union of < with =). Suppose we name tI and t0I by fluents bI and
eI respectively, requiring of a Kripke model hN ;R; V i that

V ðbIÞ ¼ ftIg and V ðeIÞ ¼ ft0Ig

(so that bI and eI are nominals in the sense of Hybrid Logic (Blackburn 2000)).
Suppose also that P is the past operator and F is the future operator; that is,
over a Kripke model hN ;R; V i, Pu is true iff u is true at an R-earlier time

x � Pu() ð9yRxÞ y � u

and Fu is true iff u is true at an R-later time

x � Fu() ð9yR�1xÞ y � u:

We can then express oðeÞ in terms of bI and eI as the fluent

bI _ eI _ ðPbI ^ FeIÞ
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where, as usual, ^ is conjunction and _ disjunction

x � u ^ w() x � u and x � w

x � u _ w() x � u or x � w

for all fluents u;w. To picture e bounded to the left and right, we have a choice

FoðeÞ oðeÞ þ PoðeÞ ¼ FoðeÞ oðeÞ n
PoðeÞ j n � 1

on

of strings sandwiching oðeÞ by FoðeÞ and PoðeÞ just as in the previous section, el

and er delimit e. We can strip off the first and last positions of these strings
(reducing their lengths by 2) if we peer inside oðeÞ and unwind the disjunction
bI _ eI _ ðPbI ^ FeIÞ, transforming FoðeÞ oðeÞþPoðeÞ to

bI ; eI þ bI �
	 eI : ð8Þ

To generalize from a particular interval I to multiple occurrences of a
type, let us abstract away the subscript I on bI and eI for fluents b and e that
may have any number of scattered occurrences over time (e.g. dawn, rain).
Writing w for e, and :w for the negation of w,

x � :w() not x � w;

we have two extreme examples:

Case 1 b ¼ w, turning (8) to w + w�	w , and

Case 2 b ¼ :w, turning (8) to :w;w þ :w�	w which reduces to :w�	w
after we discard the spurious possibility :w;w .

In Case 1, we might expect that w holds from start to finish and accordingly
transform w þ w�	w to w

þ
on the basis of the inertial principle that

ðzÞ w persists unless a force is applied on it

(and no force is expected unless specifically mentioned). Applying ðzÞ to the
instance of non-persistence in Case 2, we must postulate a force on w to explain
the transition from :w to w. One way to express this is through a fluent fw
saying a force is applied to w, which we add to the string :w w of length two
to get

:w; fw w :

What about the other strings (in :w�þw ) for Case 2? Suppose we can measure
the degree to which w holds by an element of (say) the unit interval ½0; 1�, and
can form a fluent w-deg(x), read ‘‘w holds to the degree x,’’ with

w equivalent to w-degð1Þ:
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Let w" be the fluent

ð9x \ 1Þ w-degðxÞ ^ ð9y \ xÞ previousðw-degðyÞÞ

saying that the degree of w is short of 1 but is greater than at the previous time.6

We transform the strings in :w�þw to the strings in

w- degð0Þ w"
þ

w ð9Þ

to describe a monotone incremental transition from w-deg(0) to w. The change
described in (9) is idealized in van Lambalgen and Hamm (2005) through a
trajectory predicate over ½0; 1�, concerning which van Lambalgen and Hamm
acknowledge that

One cannot simply assume that we have a dense set of events in memory to
derive from this that cognitive (and not just physical) time may be
assumed to be continuous. It is much more reasonable to assume that
density arises in the limit of adding more and more events, and that, at
each stage, memory contains only finitely many events. (van Lambalgen
and Hamm 2006, p. 12)

Finite strings arguably reflect the selectivity and partiality of cognition more
faithfully than the use of real numbers. At any rate, there are two transitions in
(9) that (according to ðzÞ) call for forces: the transition from w-deg(0) to w" and
the transition from w" to w. Adding these forces to (9), we get

w-deg(0); fw" w"
	
w"; fw w

which we can obtain from the superposition

w-deg(0); fw" wþ"
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

activity

� & �þ w"; fw w
|fflfflfflfflffl{zfflfflfflfflffl}

achievement

:

In terms of the well-known Vendler classes (Vendler 1967), the forces behind fw"
and fw correspond roughly to an activity and an achievement that, as suggested in
Dowty (1979), combine to form an accomplishment. The correspondences here
are rough as particular examples of accomplishments, such as Pat walk from
Dublin to Belfast, might (or might not) be analyzed by variants of (9), with say,
w-deg(0) replaced by inðPat;DublinÞ,w" by walkðPatÞ, andw by inðPat;BelfastÞ.
Even then, however, we would have the superposition

6 That is, given a Kripke model hN ;R; V i and x 2 N ,

x � previousðuÞ () y � u for some yR�x

where R� is the successor subrelation of R

yR�x ()
def

yRx and ð8zRxÞ z ¼ y or zRy:
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inðPat;DublinÞ; fwalkðPatÞ walkðPatÞ þ� &

�
þwalkðPatÞ; finðPat;BelfastÞ inðPat;BelfastÞ

of an activity (concatenated with �) and an achievement (prefixed by �þ). By
contrast, Case 1 represents a state insofar as no force is applied to w, and so the
inertial principle ðzÞ yields w

þ
. We shall see how to make ðzÞ precise shortly.

3.2 Refinements by constraints and entailments

An event type given by a language L � FinðUÞ	 over finite sets of fluents must
often be refined to another L0 � FinðUÞ	. One way to make the notion of
refinement precise is through the notion of subsumption .. We say L0 subsumes
L and write L0 . L if the superposition of L and L0 contains L0

L0 . L ()
def

L0 � L&L0

(Fernando 2004). Over strings s identified with languages fsg, . reduces to
componentwise containment between strings of the same length

a1 � � � an . b1 � � � bm () n ¼ m and bi � ai for 1 � i � n

so that over languages, . holds whenever every string in the first subsumes one
in the second

L0 . L() ð8s0 2 L0Þð9s 2 LÞ s0 . s:

The intuition is that a language L is essentially a typewith instances s 2 L. In other
words, the information in L amounts to a disjunction

W
s2L s of conjunctions s.

Under this construal, L0 . L roughly means L0 is at least as informative as L. A
notion of containment between strings orthogonal to . is the following. A
factor of s is a string s0 such that s ¼ us0v for some (possibly empty) strings u; v.

We can now associate the inertial principle ðzÞ with the requirement that
every factor of a string that subsumes �u also subsumes u� or fu�. We write

�u ) u�þ fu�

for the set of strings in FinðUÞ	 that meet this requirement.7 In general, given
two languages L and L0 over the alphabet FinðUÞ, we define the constraint
L) L0 to consist of all strings s 2 FinðUÞ	 such that for every factor s0 of s,

7 A more detailed analysis of inertia and force is presented in Fernando (2006a), with constraints

u�) �u þ f:u�
(regulating persistence to the right) and

fu�) �u þ f:u�
(saying intuitively, succeed unless opposed) for inertial fluents u.

546 T. Fernando

123



s0 . L implies s0 . L0:

The special case of L0 ¼ ; reduces to the set

L ) ; ¼ fs 2 FinðUÞ	 j not s . �	L�	g

of strings that do not subsume �	L�	. For L ¼ :w;w , this removes the
spurious possibility in Case 2 of Sect. 3.1.

But how exactly are constraints applied to refine a language? To answer this
question, we revise subsumption . to a relation that is insensitive to �-padding.
Let L� be L with any number of �’s inserted or deleted at the beginning and
end of L

L� ¼def �	unpadhLi�	:

If L0 subsumes L�, we write L0 I L, pronounced L0 weakly subsumes L

L0 I L ()
def

L0 . L�:

Table 5 compares I to other notions of containment above, including equality.
We can strip off �-padding when evaluating weak subsumption

L0 I L() unpadhL0i I unpadhLi:

Next, let us agree that L C-entails L0, and write L ‘C L0, if every string in C that
weakly subsumes L also weakly subsumes L0

L ‘C L0 ()
def
ð8s 2 CÞ s I L implies s I L0:

Under this definition, C is the set of possible situations against which to eval-
uate the implication from L to L0. If we write L I for the set of strings that
weakly subsume L

L I ¼def fs 2 FinðUÞ	 j s I Lg

then L ‘C L0 can be put more concisely as: the intersection of L I with C weakly
subsumes L0

Table 5 Notions of containment between strings

Temporal
stretch

Descriptive
detail

Equality= Fixed Fixed
Subsumption . Fixed Variable
Factor Variable Fixed
Weak subsumption I Variable Variable
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L ‘C L0 () ðL I \ CÞ I L0:

Constraints are introduced incrementally by intersection with C. The smaller C
becomes, the more ‘C-entailments we get. The entailment L ‘C L0 reduces to an
inclusion

L ‘C L0 () ðL I \ CÞ � L0 I

between languages L I \ C and L0 I that are regular provided L, C and L0 are.
Finding finite automata that accept L, C and L0 pays off as it is well-known that
inclusions are decidable between regular languages (but not between certain
context-free languages). In this connection, it is worth noting that we can adapt
a construction due to Koskenniemi (e.g. Beesley and Karttunen 2003) to show
that the constraint L) L0 is regular if L and L0 are. If we collect the strings that
subsume L in L.

L. ¼def fs 2 FinðUÞ	 j s . Lg

and the strings not in L in the complement L of L

L ¼def fs 2 FinðUÞ	 j s 62 Lg

then we can express L) L0 as the complement of the set

FinðUÞ	ðL. \ L0 .Þ FinðUÞ	

of strings with a factor belonging to L. but not to L0 .. That is, we have the
Koskenniemi-esque equation

L) L0 ¼ FinðUÞ	 ðL. \ L0 .Þ FinðUÞ	:

By the closure properties of regular languages, it follows that L) L0 is regular if
L and L0 are. (More in Fernando (2007))

4 Conclusion

The basic idea developed in this paper is to represent the temporal structure
of events and situations as strings. To understand these representations, we
applied a function p on strings for two ends in Sect. 2. First, the Allen interval
relations were derived from superposition of sets of strings. Second, event
structures were formed as projective limits of strings. In Sect. 3, we abstracted
away from event occurrences to event types based on fluents with scattered
temporal instantiations. The step from event occurrences to event types given
by fluents is compatible with the claim in Steedman (2000) that there is more
to natural language temporality than time (or the event occurrences
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from which Kamp derives moments of time). Rather than treat an event
structure hE;�;�i as a Kripke frame to interpret fluents (for an interval-
based temporal logic), we chopped fluents of interval granularity to fluents
with the granularity of Kamp’s moments Mð�Þ. Finite sets of these fluents
were then strung together to describe intervals. These strings finitely
approximate Kripke models over linear orders, matching the bounded preci-
sion of natural language descriptions. We can sharpen these approximations
by working with languages and not simply strings in isolation. But the
approximations will each be discrete, mirroring the step-by-step operation of
computer programs (and instructions, in general), each step of which is
decomposable into finer steps.

The link with computation merits close scrutiny, as cognition presumably
bears some relation to computation. It turns out that the simplest computa-
tional devices, finite automata and finite-state transducers, provide a rich
supply of string sets for analyzing time, events and situations. Moreover, reg-
ular languages induce bounded but decidable notions of entailment, subject to
incremental refinement by constraints. The use of finite strings is a move away
from the totality of possible worlds, intended to improve the fit between
bounded natural language descriptions and the semantic entities against which
they are interpreted. The underlying claim is that by assigning events and sit-
uations very explicit representations, we can read entailments directly off these
representations, without having to bring in models. Until this claim is accepted,
however, models are indispensable for understanding what these representa-
tions might be about (with the bounded precision of language abstracted away).
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